Atomic Layer Deposition	ALD in spintronics	STAFF3d-spin o	Summary 00

Atomic Layer Deposition (ALD) in Magnetism and Spintronics

Michal Staňo

michal.stano@ceitec.vutbr.cz

Magnetism group winter retreat Vlachovice

January 27, 2020

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Central European Institute of Technology BRNO | CZECH REPUBLIC

Atomic Layer Deposition	ALD in spintronics	STAFF3d-spin o	Summary

Outline of the presentation

Atomic Layer Deposition

2 Use of Atomic layer deposition in spintronics

Atomic	Layer	Deposition	
0000			

ALD in spintronic

STAFF3d-spi

Atomic Layer Deposition

Coating thickness uniformity with different methods

Atomic	Layer	Deposition	
0000			

ALD in spintronic

STAFF3d-spin

Atomic Layer Deposition

- Special mode of Chemical Vapor Deposition (CVD)
- Sequential self-limiting surface chemical reactions
- Conformal coating of rough surfaces, holes, pillars, ...
- Precise control over film thickness (~ 0.1 nm per cycle)

Atomic	Layer	Deposition	
0000			

ALD in spintronic

STAFF3d-spin

Summary 00

Atomic Layer Deposition

- Special mode of Chemical Vapor Deposition (CVD)
- Sequential self-limiting surface chemical reactions
- Conformal coating of rough surfaces, holes, pillars, ...
- Precise control over film thickness (\approx 0.1 nm per cycle)

ALD Review: George, *Chem. Rev.* **110**, 111-131 (2010) Various info: www.plasma-ald.com

Conformal coating possible also in a solution – electroless plating

What materials can be deposited by ALD?

Close to everything:

- nitrides, oxides [AIO_x]
- metals, including Fe, Co, Ni, Pt, W, Ta, Ru, Rh, ...
- alloys, ternary and more complex compounds

List of materials: Miikkulainen et al., JAP 113, 021301 (2013)

Atomic	Layer	Deposition
0000		

ALD in spintronics

STAFF3d-spin

Summary 00

ALD cooking: Recipe and ingredients

ALD deposition - what is needed

- vessel: reactor (rough vacuum, temperature control, gas inlets)
- ingredients: precursors and reactants
- energy: temperature and/or plasma
- **recipe** (process parameters: how much, how long, ...)

Atomic	Layer	Deposition
0000		

ALD in spintronics

STAFF3d-spin

Summary 00

ALD cooking: Recipe and ingredients

ALD deposition - what is needed

- vessel: reactor (rough vacuum, temperature control, gas inlets)
- ingredients: precursors and reactants
- energy: temperature and/or plasma
- **recipe** (process parameters: how much, how long, ...)

(a) precursors - mostly metallo-organics

Atomic	Layer	Deposition
0000		

ALD in spintronics

STAFF3d-spin

Summary 00

ALD cooking: Recipe and ingredients

ALD deposition - what is needed

- vessel: reactor (rough vacuum, temperature control, gas inlets)
- ingredients: precursors and reactants
- energy: temperature and/or plasma
- **recipe** (process parameters: how much, how long, ...)

(a) precursors – mostly metallo-organics

(b) reactants

Atomic Layer Deposition	ALD in spintronics	STAFF3d-spin o	Summary 00
ALD cycle – How	it works		

See also https://www.plasma-ald.com/

ALD in spintronics / magnetism

- [microelectronics]: insulating, protective layers (AlO_x), conductive seed layers (Cu, Co, Ru)
- spin-Hall-active Pt thin films (order of magnitude worse than sputtered Pt, but detectable & room for improvement) *APL* **112**, 242403 (2018)
- oxide barrier in magnetic tunnel junctions
- magnetic nanotubes

Atomic Layer Deposition	ALD in spintronics	STAFF3d-spin	Summary
	0.0		

Oxide barrier in magnetic tunnel junctions

Magnetic Tunnel Junction (MTJ): magnet/insulator/magnet Tunneling MagnetoResistance (TMR= $\frac{R_{\uparrow\downarrow}(H)-R_{\uparrow\uparrow}}{R_{\uparrow\uparrow}}$) 100s % @ RT

Oxide barrier in magnetic tunnel junctions

Magnetic Tunnel Junction (MTJ): magnet/insulator/magnet Tunneling MagnetoResistance (TMR= $\frac{R_{\uparrow\downarrow}(H)-R_{\uparrow\uparrow}}{R_{\uparrow\uparrow}}$) 100s % @ RT

 $\begin{array}{l} \text{AIO}_{\chi} & 24\,\% \; \text{TMR} @ \,40\,\text{K}, \,1.6\,\text{nm}, \, \textit{APL} \, \textbf{102}, \,202401 \; (2013) \\ & \approx 1.2\,\text{\AA} \; \text{still good barrier height:} \; \textit{AIP} \; \textit{Adv.} \; \textbf{9}, \, 025018 \; (2019) \\ \text{HfO}_2 & 10\,\% \; \text{TMR} @ \; \text{RT}, \, 2\,\text{nm}, \, \textit{APL} \; \textbf{105}, \, 132405 \; (2014) \\ \text{MgO} \; \; \text{Fe}_{3-\delta}\text{O}_4/\text{MgO/Co} - \, \text{all CVD} \; (\text{barrier ALD}): \, 6\,\% \; \text{TMR} \; @ \; \text{RT} \\ & J. \; \textit{Phys.} \; D: \; \textit{Appl. Phys.} \; \textbf{47}, \; 102002 \; (2014) \\ \end{array}$

Also relevant for Josephson junctions (superconductor/insulator/superconductor)

Oxide barrier in magnetic tunnel junctions

Magnetic Tunnel Junction (MTJ): magnet/insulator/magnet Tunneling MagnetoResistance (TMR= $\frac{R_{\uparrow\downarrow}(H)-R_{\uparrow\uparrow}}{R_{\uparrow\uparrow}}$) 100s % @ RT

 $\begin{array}{l} \text{AIO}_{\chi} & 24\,\% \; \text{TMR} @ \,40\,\text{K}, \,1.6\,\text{nm}, \, \textit{APL} \, \textbf{102}, \,202401 \; (2013) \\ & \approx 1.2\,\text{\AA} \; \text{still good barrier height:} \; \textit{AIP} \; \textit{Adv.} \; \textbf{9}, \, 025018 \; (2019) \\ \text{HfO}_2 & 10\,\% \; \text{TMR} @ \; \text{RT}, \, 2\,\text{nm}, \, \textit{APL} \; \textbf{105}, \, 132405 \; (2014) \\ \text{MgO} \; \; \text{Fe}_{3-\delta}\text{O}_4/\text{MgO/Co} - \, \text{all CVD} \; (\text{barrier ALD}): \, 6\,\% \; \text{TMR} \; @ \; \text{RT} \\ & J. \; \textit{Phys.} \; D: \; \textit{Appl. Phys.} \; \textbf{47}, \; 102002 \; (2014) \\ \end{array}$

Also relevant for Josephson junctions (superconductor/insulator/superconductor)

<u>2D materials</u> (graphene, black P) + \leq 1 nm ALD barrier in MTJs ACS Nano 8(8), 7890-7895 (2014)

Magnetic nanotubes deposited using ALD

Ni, Co Nanotubes: JAP 111, 09J111 (2007)

Template: pore diameter 35 nm and 160 nm, length 2-50 μ m Precursor: nickelocene (NiCp2)+H₂O vapour – gives oxide Reduction better after ALD – Ar+5 % H₂ (lower grain size)

SEM images: TiO₂/Ni/TiO₂ tubes. Left: in template (top-view), Right: liberated.

Atomic Layer Deposition	ALD in spintronics	STAFF3d-spin ●	Summary 00
STAFF3d-spin pro	ect		

Synthesis and investigation of Synthetic Tubular AntiFerromagnets For 3D Spintronics

Atomic Layer Deposition	ALD in spintronics	STAFF3d-spin ●	Summary 00
STAFF3d-spin pro	piect		

Synthesis and investigation of Synthetic Tubular AntiFerromagnets For 3D Spintronics

Goals:

- preparation 3D vertical arrays of tubular SAF (ALD, electroless dep.)
- test of interfaces suitability for spintronics (giant magnetoresistance)
- investigation of individual magnetic nanotubes, tubular SAFs

Synthetic antiferromagnets. (a) current planar structure (Ru $t \approx 1$ nm) versus proposed 3D vertical structure. (b) Cross-section view on the 3D tubular structure.

Atomic Layer Deposition	ALD in spintronics	STAFF3d-spin	Summary
			•0

Summary: ALD in spintronics/magnetism

- + conformal coating, high-aspect ratio structures (even 1000:1)
- + precise control over thickness, easy for core-shell
- slow, not suitable for thicker coatings (\geq 100 nm)
- typically highly granular
- challenge: high purity, good magnetic properties

Atomic Layer Deposition	ALD in spintronics	STAFF3d-spin	Summary
			•0

Summary: ALD in spintronics/magnetism

- + conformal coating, high-aspect ratio structures (even 1000:1)
- + precise control over thickness, easy for core-shell
- slow, not suitable for thicker coatings (\geq 100 nm)
- typically highly granular
- challenge: high purity, good magnetic properties

- still mostly oxides (cover layers, barriers in MTJs)
- first tests with Pt for spintronics (spin Hall effect)
- deposition of magnetic nanotubes, but mostly oxides or reduces from oxides (lower quality)
- only few magnetic measurements on ALD magnets (VSM) 11/12

Atomic Layer Deposition	ALD in spintronics	STAFF3d-spin o	Summary ⊙●
Aakaawladaam	onto		

Acknowledgements

Thank you for your attention!

This work was supported by the ESF under the project CZ.02.2.69/ $0.0/0.0/19_074/0016239$.

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

