Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary

Atomic Layer Deposition (ALD) of Cobalt

Michal Staňo

michal.stano@ceitec.vutbr.cz

CEITEC Magnetism seminar

June 3, 2020

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Central European Institute of Technology BRNO | CZECH REPUBLIC

STAFF3d-spin project: http://magnetism.ceitec.cz/staff3d-spin/

Motivation o	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary 00
Outline	of the prese	ntation		

Motivation: Magnetic racetrack memory 4.0

- 2 STAFF3d-spin project: multilayered nanotubes
- 3 Atomic Layer Deposition
- Experiments: Co ALD on planar substrates 4

Summary 5

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
•				

Motivation: 3D Magnetic racetrack memory 4.0

Available prominent magnetic data storage products (2D):

- Hard Disk Drive (HDD, 16 TB @ 3.5" size, sampling 20 TB)
- Magnetoresistive Random-Access Memory (MRAM, 1Gb)

Images: openclipart.org, Everspin.com

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
•				

Motivation: 3D Magnetic racetrack memory 4.0

Available prominent magnetic data storage products (2D):

- Hard Disk Drive (HDD, 16 TB @ 3.5" size, sampling 20 TB)
- Magnetoresistive Random-Access Memory (MRAM, 1Gb)

Images: openclipart.org, Everspin.com

(a) Racetrack memory 1.0

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
•				

Motivation: 3D Magnetic racetrack memory 4.0

Available prominent magnetic data storage products (2D):

- Hard Disk Drive (HDD, 16 TB @ 3.5" size, sampling 20 TB)
- Magnetoresistive Random-Access Memory (MRAM, 1Gb)

Images: openclipart.org, Everspin.com

(a) Racetrack memory 1.0

(b) Racetrack memory 4.0

1.0: Parkin et al. *Science* **320**, 190-194 (2008) 4.0: Parkin & Yang, *Nat. Nanotechnol.* **10**(3), 195-198 (2015)

Domain-wall racetrack memory: non-volatile, solid-state memory; 4.0: faster ("SAF")

3/15

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
	•0			

STAFF3d-spin project: multilayered nanotubes

Synthesis and investigation of Synthetic Tubular AntiFerromagnets For 3D Spintronics

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
	•0			

STAFF3d-spin project: multilayered nanotubes

Synthesis and investigation of Synthetic Tubular AntiFerromagnets For 3D Spintronics

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
	•0			

STAFF3d-spin project: multilayered nanotubes

Synthesis and investigation of Synthetic Tubular AntiFerromagnets For 3D Spintronics

Goals:

- preparation 3D vertical arrays of tubular SAF
- test of interfaces suitability for spintronics (giant magnetoresistance)
- investigation of individual magnetic nanotubes, tubular SAFs

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
o	○●		000	00
How to	prepare nan	otube (arrays)?		

Best: use a template with well defined dimensions

(a) porous alumina

(b) porous polycarbonate

Motivation o	STAFF3d-spin ○●	Atomic Layer Deposition	Experiments	Summary 00
How to pr	epare nanot	ube (arrays)?		

Best: use a template with well defined dimensions

Nanoporous alumina (AIO_x)

- tunable pore diameter, spacing and length
- well ordered, huge amount of pores (tubes) 10⁹ 10¹⁰/cm²
- higher temperature stability (cryogenic Temp to $\approx 800^{\circ}$ C)
- book: Losic & Santos, Nanoporous Alumina, Springer (2015)

Motivation o	STAFF3d-spin ⊙●	Atomic Layer Deposition	Experiments	Summary 00
How to pr	epare nanot	ube (arrays)?		

Best: use a template with well defined dimensions

Nanoporous alumina (AIO_x)

- tunable pore diameter, spacing and length
- well ordered, huge amount of pores (tubes) 10⁹ 10¹⁰/cm²
- higher temperature stability (cryogenic Temp to $\approx 800^\circ C)$
- book: Losic & Santos, Nanoporous Alumina, Springer (2015)

Now how to coat/fill this template?

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
		00000		

Atomic Layer Deposition (ALD) – conformal coating

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
		00000		

Atomic Layer Deposition (ALD) – conformal coating

beneq.com

Atomic Layer Deposition (ALD)

- Special mode of Chemical Vapor Deposition (CVD)
- Chemical reaction only at the surface
- Conformal coating of rough surfaces, holes, pillars, ...
- Precise control over film thickness (≈ 0.1 nm per cycle)

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
		00000		

Atomic Layer Deposition (ALD) – conformal coating

beneq.com

Atomic Layer Deposition (ALD)

- Special mode of Chemical Vapor Deposition (CVD)
- Chemical reaction only at the surface
- Conformal coating of rough surfaces, holes, pillars, ...
- Precise control over film thickness (\approx 0.1 nm per cycle)

ALD Review: George, *Chem. Rev.* **110**, 111-131 (2010) Various info: www.plasma-ald.com

Motivation o	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary 00

Molecular Beam Epitaxy (MBE): UHV evaporation, semiconductors, reaction of atomic or molecular beams (e.g. Ga, As) with heated monocrystalline substrate; deposition of atomic layers, "ultrapure"

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
		00000		

Molecular Beam Epitaxy (MBE): UHV evaporation, semiconductors, reaction of atomic or molecular beams (e.g. Ga, As) with heated monocrystalline substrate; deposition of atomic layers, "ultrapure"

Chemical Vapour Deposition (CVD): typically higher pressure reaction: precursor + energy (+ precursor 2)

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
		00000		

Molecular Beam Epitaxy (MBE): UHV evaporation, semiconductors, reaction of atomic or molecular beams (e.g. Ga, As) with heated monocrystalline substrate; deposition of atomic layers, "ultrapure"

Chemical Vapour Deposition (CVD): typically higher pressure reaction: precursor + energy (+ precursor 2)

Atomic Layer Deposition (ALD): special CVD reaction limited to surface: precursor 1 + precursor 2 + energy no deposition without the 2nd precursor! JAP 113, 021301 (2013)

	bullo
tion cycle	φ φ
ALD read	aneaneaneaneaneaneaneaneaneaneaneaneanea
	Ф Ф 0

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
		00000		

Molecular Beam Epitaxy (MBE): UHV evaporation, semiconductors, reaction of atomic or molecular beams (e.g. Ga, As) with heated monocrystalline substrate; deposition of atomic layers, "ultrapure"

Chemical Vapour Deposition (CVD): typically higher pressure reaction: precursor + energy (+ precursor 2)

Atomic Layer Deposition (ALD): special CVD reaction limited to surface: precursor 1 + precursor 2 + energy no deposition without the 2nd precursor! JAP 113, 021301 (2013)

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
		00000		

What materials can be deposited by ALD?

Close to everything:

- oxides [AlO_x], nitrides
- metals, including Fe, Co, Ni, Pt, W, Ta, Ru, Rh, ...
- alloys, ternary and more complex compounds

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
		00000		

What materials can be deposited by ALD?

Close to everything:

- oxides [AlO_x], nitrides
- metals, including Fe, Co, Ni, Pt, W, Ta, Ru, Rh, ...
- alloys, ternary and more complex compounds

List of materials: Miikkulainen et al., JAP 113, 021301 (2013)

Co	Co(ⁱ PrAMD) ₂	H ₂	1053, 1067, and 1068
	Co(ⁱ PrAMD) ₂	NH ₃	1068
	Co(ⁱ PrAMD) ₂	NH3 ^e	1069
	CoCp(ⁱ PrAMD)	NH3 ^e	1070
	CoCp ₂	NH3 ^e	1071 and 1072
	CoCp(CO) ₂	NH3 ^e	1073 and 1074
	CoCp(CO) ₂	H ₂ ^e	1074 and 1075
	CoCp(CO) ₂	N2 ^e	1074 and 1075
	Co ₂ (CO) ₈	H ₂ ^e	1075-1077
	Co ₂ (CO) ₈	N_2^e	1075
CoO _x	CoI ₂	O_2	1078
	Co(acac) ₂	O2	1079-1081
	Co(acac) ₃	O ₂	1079-1087
	Co(thd) ₂	O3	1060 and 1088-1090
	Co(ⁱ PrAMD) ₂	H_2O	1053
CoSi ₂	CoCp ₂	NH ₃ , SiH ₄ °	1091

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
		00000		

Magnetic nanotubes deposited using ALD so far

Deposition of (non-ferromagnetic) oxide, reduction to metal later \rightarrow usually lower quality (also magnetism-wise)

Example: Ni, Co Nanotubes – *JAP* **111**, 09J111 (2007) Template: pore diameter 35 nm and 160 nm, length 2-50 μ m Precursor: nickelocene (NiCp2)+H₂O vapour – gives oxide Reduction better after ALD – Ar+5 % H₂ (lower grain size)

SEM images: TiO₂/Ni/TiO₂ tubes. Left: in template (top-view), Right: liberated.

Motivation o	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary 00
Co Pred	cursor			

Co (iPr-Me-AMD)₂: bis(N,N'-diisopropylacetamidinato) Cobalt (II)

Motivation o	STAFF3d-spin	Atomic Layer Deposition	Experiments 000	Summary 00

Co Precursor

Co (iPr-Me-AMD)₂: bis(N,N'-diisopropylacetamidinato) Cobalt (II)

Motivation o	STAFF3d-spin	Atomic Layer Deposition	Experiments 000	Summary 00
Co Preci	ursor			

Co (iPr-Me-AMD)₂: bis(N,N'-diisopropylacetamidinato) Cobalt (II)

- dark green crystals
- low vapour pressure 50 mtorr (\approx 7 Pa) @ 40°C (reactor \approx 150 mtorr, 20 Pa)
- Iow deposition rate in ALD << 0.4 Å/cycle (@ 350°C, close to decomposition)</p>
- +NH₃: better purity; +H₂: smaller grains, maybe better magnetic properties

Motivation o	STAFF3d-spin	Atomic Layer Deposition	Experiments 000	Summary 00

Co Precursor

Co (iPr-Me-AMD)₂: bis(N,N'-diisopropylacetamidinato) Cobalt (II)

- dark green crystals
- low vapour pressure 50 mtorr (\approx 7 Pa) @ 40°C (reactor \approx 150 mtorr, 20 Pa)
- low deposition rate in ALD << 0.4 Å/cycle (@ 350°C, close to decomposition)
- +NH₃: better purity; +H₂: smaller grains, maybe better magnetic properties

Lim et al., Nat. Mater. **2**(11), 749-754 (2003) \rightarrow magnetometry Lee et al., *J. Electrochem. Soc.* **157**(1), D10-D15 (2010)

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
			•00	

Atomic Layer Deposition @ CEITEC Nano

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments
			•00

Summary

Atomic Layer Deposition @ CEITEC Nano

More information on the instrument: http://nano.ceitec.cz/atomic-layer-deposition-system-ultratechcambridgenanotech-fiji-200-ald/

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
			000	

Co ALD test v5 on SiO₂ @ 350 °C

(a) Electron microscopy (b) Topography (AFM)

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
			000	

Co ALD test v5 on SiO₂ @ 350 °C

(a) Electron microscopy (b) Topography (AFM)

(c) Chemical analysis (EDX 1.6 kV)

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
			000	

Co ALD test v5 on SiO₂ @ 350 $^{\circ}$ C

(c) Chemical analysis (EDX 1.6 kV) (d) Magnetometry

Magnetometry (VSM): close to the limit, sample centering issue \rightarrow redo To do: Auger mapping (Co particles or film+particles?), XPS?,...

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
			000	

Our ALD depositions @ CEITEC Nano

First: coating planar substrate; Later: porous AIO_x templates Proper substrate needed

Si: very low coverage, mostly on dirty surfaces, defects SiO₂ (thermal, 80 nm): some Co there Fe 30 nm on Si: some Co there Al₂O₃ (0001): no or extremely weak Co signal

Current issues:

- low precursor dose (low vapour pressure), low thickness
- Is the film continuous or just particles?
- Will it grow on SiO₂ prepared by ALD?

Also: Will it grow on Ru? It should, but ...

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
				••

Summary: Atomic Layer Deposition (ALD) of Cobalt

- * ALD of Cobalt explored in the literature, but mostly only for microelectronics, not spintronics
- * magnetic nanotubes prepared by ALD before, but as oxides and reduced afterwards (lower quality?)

Motivation	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary
				•0

Summary: Atomic Layer Deposition (ALD) of Cobalt

- * ALD of Cobalt explored in the literature, but mostly only for microelectronics, not spintronics
- * magnetic nanotubes prepared by ALD before, but as oxides and reduced afterwards (lower quality?)
- Our work direct metallic+ferromagnetic Co by ALD

Preliminary observations / results [Co(iPrMeAMD)2]

- deposition quite substrate dependent
- very low deposition rate and thickness (particles?)
- first cobalt deposits obtained, v5 seems magnetic
- more optimization needed to have thicker continuous films

Motivation o	STAFF3d-spin	Atomic Layer Deposition	Experiments	Summary ⊙●
Acknow	ledaements			

Marek Eliáš ALD – technical assistance Marek Vaňatka, Kristýna Davídková SiO₂, Si substrates

Thank you for your attention!

This work was supported by the ESF under the project CZ.02.2.69/ $0.0/0.0/19_074/0016239$.

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

STAFF3d-spin project: http://magnetism.ceitec.cz/staff3d-spin/ (slides of presentations, updates, ...)

ALD cooking: Recipe and ingredients

ALD deposition - what is needed

- vessel: reactor (rough vacuum, temperature control, gas inlets)
- ingredients: precursors and reactants
- energy: temperature and/or plasma
- **recipe** (process parameters: how much, how long, ...)

ALD in spintronics

ALD cooking: Recipe and ingredients

ALD deposition - what is needed

- vessel: reactor (rough vacuum, temperature control, gas inlets)
- ingredients: precursors and reactants
- energy: temperature and/or plasma
- **recipe** (process parameters: how much, how long, ...)

(a) precursors – mostly metallo-organics

ALD cooking: Recipe and ingredients

ALD deposition - what is needed

- vessel: reactor (rough vacuum, temperature control, gas inlets)
- ingredients: precursors and reactants
- energy: temperature and/or plasma
- **recipe** (process parameters: how much, how long, ...)

(a) precursors – mostly metallo-organics

Miikkulainen et al., JAP 113, 021301 (2013)

(b) reactants

ALD depositions of metallic cobalt

Explored for <u>microelectronics</u> (seed, conductive layer, interconnects), but almost no magnetic investigation

Review on ALD and (MO-)CVD of cobalt thin films: Kaloyeros et al., *ECS J. Solid State Sci. Technol.* **8**(2), P119-P152 (2019)

ALD depositions of metallic cobalt

Explored for <u>microelectronics</u> (seed, conductive layer, interconnects), but almost no magnetic investigation

Review on ALD and (MO-)CVD of cobalt thin films: Kaloyeros et al., *ECS J. Solid State Sci. Technol.* **8**(2), P119-P152 (2019)

 Table 1. ALD Processes Reported in the Literature for the Deposition of Co, Listing Deposition Temperature T, GPC, and Resistivity ρ

 Vos et al., J. Phys. Chem. C 122, 22519-22529 (2018)

precursor	co-reactant	T (°C)	GPC (Å)	$\rho (\mu \Omega \text{ cm})$	refs
CoCp ₂	NH ₃ plasma	300	0.48	10	37
CoCp ₂	H ₂ /N ₂ plasma	150-450	0.26-0.65	18	26
CoCp ₂	NH3ª	100-300	0.37-0.97		38
Co(MeCp) ₂	NH ₃ plasma	100-350	0.4-1.9	31	39
Co(CpAMD) ^b	NH ₃ plasma	200-250	0.5	140	40
$Co_2(CO)_8$	H ₂ plasma	75-110	1.2		41
$CpCo(CO)_2$	H ₂ plasma	125-175	1.1		42
Co(AMD)2 ^c	H ₂	340	0.50	285	43
Co(AMD) ₂	NH ₃	350	0.26	50	44
^t Bu-allylCo(CO) ₃	dimethylhydrazine	140	0.5		45
CCTBAd	H ₂	125-200	0.8	90	46
Co(DBDB) ^e	formic acid	170-180	0.95	13	7, 47
Co(DBDB) ^e	tert-butylamine	170-200	0.98	15	48

^aHot-wire ALD. ^bCyclopentadienyl isopropyl acetamidinato-cobalt. ^cBis(N,N'-diisopropylacetamidinato)cobalt(II). ^dDicobalt hexacarbonyl tertbutylacetylene. ^cBis(1,4-ditert-butyl-1,3-diazabutadienyl)cobalt(II). ^fMeasured on the Ru substrate.

Lim et al., Nat. Mater. **2**(11), 749-754 (2003) – magnetometry on films Lee et al., *J. Electrochem. Soc.* **157**(1), D10-D15 (2010)

ALD cycle – How it works

See also https://www.plasma-ald.com/

ALD in spintronics / magnetism

- [microelectronics]: insulating, protective layers (AlO_x), conductive seed layers (Cu, Co, Ru)
- spin-Hall-active Pt thin films (order of magnitude worse than sputtered Pt, but detectable & room for improvement) *APL* 112, 242403 (2018)
- oxide barrier in magnetic tunnel junctions
- magnetic nanotubes

Oxide barrier in magnetic tunnel junctions

Magnetic Tunnel Junction (MTJ): magnet/insulator/magnet Tunneling MagnetoResistance (TMR= $\frac{R_{\uparrow\downarrow}(H)-R_{\uparrow\uparrow}}{R_{\uparrow\uparrow}}$) 100s % @ RT

Oxide barrier in magnetic tunnel junctions

Magnetic Tunnel Junction (MTJ): magnet/insulator/magnet Tunneling MagnetoResistance (TMR= $\frac{R_{\uparrow\downarrow}(H)-R_{\uparrow\uparrow}}{R_{\uparrow\uparrow}}$) 100s % @ RT

 $\begin{array}{l} \text{AIO}_{\chi} & 24\,\% \; \text{TMR} @ \,40\,\text{K}, \,1.6\,\text{nm}, \, \textit{APL} \, \textbf{102}, \,202401 \; (2013) \\ & \approx 1.2\,\text{\AA} \; \text{still good barrier height:} \; \textit{AIP} \; \textit{Adv.} \; \textbf{9}, \, 025018 \; (2019) \\ \text{HfO}_2 & 10\,\% \; \text{TMR} @ \; \text{RT}, \, 2\,\text{nm}, \, \textit{APL} \; \textbf{105}, \, 132405 \; (2014) \\ \text{MgO} \; \; \text{Fe}_{3-\delta}\text{O}_4/\text{MgO/Co} - \, \text{all CVD} \; (\text{barrier ALD}): \, 6\,\% \; \text{TMR} \; @ \; \text{RT} \\ & J. \; \textit{Phys.} \; D: \; \textit{Appl. Phys.} \; \textbf{47}, \; 102002 \; (2014) \\ \end{array}$

Also relevant for Josephson junctions (superconductor/insulator/superconductor)

Oxide barrier in magnetic tunnel junctions

Magnetic Tunnel Junction (MTJ): magnet/insulator/magnet Tunneling MagnetoResistance (TMR= $\frac{R_{\uparrow\downarrow}(H)-R_{\uparrow\uparrow}}{R_{\uparrow\uparrow}}$) 100s % @ RT

 $\begin{array}{l} \text{AIO}_{x} & 24\,\% \; \text{TMR} @ \,40\,\text{K}, \,1.6\,\text{nm}, \,\textit{APL} \, \textbf{102}, \,202401 \; (2013) \\ &\approx 1.2\,\text{\AA} \; \text{s} \; \text{still good barrier height:} \; \textit{AIP} \; \textit{Adv.} \; \textbf{9}, \, 025018 \; (2019) \\ \text{HfO}_{2} & 10\,\% \; \text{TMR} \; @ \; \text{RT}, \, 2\,\text{nm}, \, \textit{APL} \, \textbf{105}, \, 132405 \; (2014) \\ \text{MgO} \;\; \text{Fe}_{3-\delta}\text{O}_{4}/\text{MgO/Co} - \, \text{all CVD} \; (\text{barrier ALD}): \, 6\,\% \; \text{TMR} \; @ \; \text{RT} \\ &J. \; \textit{Phys.} \; \textit{D:} \; \textit{Appl.} \; \textit{Phys.} \; \textbf{47}, \; 102002 \; (2014) \end{array}$

Also relevant for Josephson junctions (superconductor/insulator/superconductor)

 $\frac{\text{2D materials}}{\text{4} \le 1} \text{ (graphene, black P)} \\ + \le 1 \text{ nm ALD barrier in MTJs} \\ \text{ACS Nano 8(8), 7890-7895 (2014)} \\ \text{(2014)} \\ \text{(2014)}$

Magnetic nanotubes deposited using ALD

Ni, Co Nanotubes: JAP 111, 09J111 (2007)

Template: pore diameter 35 nm and 160 nm, length 2-50 μ m Precursor: nickelocene (NiCp2)+H₂O vapour – gives oxide Reduction better after ALD – Ar+5 % H₂ (lower grain size)

SEM images: TiO₂/Ni/TiO₂ tubes. Left: in template (top-view), Right: liberated.

Summary: ALD in spintronics/magnetism

- + conformal coating, high-aspect ratio structures (even 1000:1)
- + precise control over thickness, easy for core-shell
- slow, not suitable for thicker coatings (\geq 100 nm)
- typically highly granular
- challenge: high purity, good magnetic properties

Summary: ALD in spintronics/magnetism

- + conformal coating, high-aspect ratio structures (even 1000:1)
- + precise control over thickness, easy for core-shell
- slow, not suitable for thicker coatings (\geq 100 nm)
- typically highly granular
- challenge: high purity, good magnetic properties

- still mostly oxides (cover layers, barriers in MTJs)
- first tests with Pt for spintronics (spin Hall effect)
- deposition of magnetic nanotubes, but mostly oxides or reduces from oxides (lower quality)
- only few magnetic measurements on ALD magnets (VSM) 7/7