

STAFF3d-spin project: http://magnetism.ceitec.cz/staff3d-spin/

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
•00				

Synthesis and investigation of Synthetic Tubular AntiFerromagnets For 3D Spintronics

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
•00				

Synthesis and investigation of Synthetic Tubular AntiFerromagnets For 3D Spintronics

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
•00				

Synthesis and investigation of Synthetic Tubular AntiFerromagnets For 3D Spintronics

Goals

- Preparation 3D vertical arrays of tubular SAF
- Test of interfaces suitability for spintronics (giant magnetoresistance)
- Investigation of individual magnetic nanotubes, tubular SAFs experiments and simulations

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
000				

Synthesis and investigation of Synthetic Tubular AntiFerromagnets For 3D Spintronics

Overview

• Previously: ALD of planar Co (magnetic, not fully optimized)

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
000				

Synthesis and investigation of Synthetic Tubular AntiFerromagnets For 3D Spintronics

Overview

- Previously: ALD of planar Co (magnetic, not fully optimized)
- Now: ALD of planar Ru; planar Co on Ru
- Now: Nanotubes optimization on HfOx
- Next: Magnetic nanotubes, Magnetic/Ru/Magnetic layer, imaging, ...

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
○○●	oo	o	o	00
Outline of	the prese	ntation		

- STAFF3d-spin project: multilayered nanotubes
- 2 Ru(Ox) ALD on planar substrates
- 3 ALD on high aspect ratio structures exposure mode
- 4 HfOx nanotubes by ALD in porous membranes

5 Summary

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
	•0			

Atomic Layer Deposition (ALD) – CVD family member

Sequential self-limiting surface chemical reactions

Sample's surface exposed in cycles to (for Ru):

precursor – organometalic (Ru(EtCp)₂),

- Ar purge (removal of excess molecules),
- Interpretation of the second secon
 - Ar purge(removal of excess molecules).

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
	•0			

Atomic Layer Deposition (ALD) – CVD family member

Sequential self-limiting surface chemical reactions

Sample's surface exposed in cycles to (for Ru):

- precursor organometalic (Ru(EtCp)₂),
- Ar purge (removal of excess molecules),
- eactant/2nd precursor (O₂),
- Ar purge(removal of excess molecules).
- surface chemistry-dependent (\rightarrow functionalization)
- slow, coating could be very granular
- + thickness control @ atomic scale
- + conformal coating (uneven surfaces)
- * variety of materials: mainly oxides, but also metals (Co, Ru, Cu)

A nice ALD review: George, *Chem. Rev.* **110**, 111-131 (2010) List of materials: Miikkulainen et al., *JAP* **113**, 021301 (2013)

STAFF3d-spin	Ru ALD exp o●	ALD exposure mode o	HfOx Nanotubes o	Summary

 $Ru(EtCp)_2 + O_2$

STAFF3d-spin	Ru ALD exp ○●	ALD exposure mode o	HfOx Nanotubes o	Summary

$Ru(EtCp)_2 + O_2 \rightarrow Ru + RuO_x + CO_2 + H_2O$

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
	0●			

$Ru(EtCp)_2 + O_2 \rightarrow Ru + RuO_x + CO_2 + H_2O$

- HfOx buffer layer: Egorov et al., Appl. Surf. Sci. 419, 107-113 (2017)
- Ru with ALD booster: Kozodaev et al., J. Chem. Phys. 151, 204701 (2019)
- ABC Ru ALD (150°C) with H₂: Lu and Elam, *Chem. Mater.* 27 4950-4956 (2015)

00

$Ru(EtCp)_2 + O_2 \rightarrow Ru + RuO_x + CO_2 + H_2O$

- HfOx buffer layer: Egorov et al., Appl. Surf. Sci. 419, 107-113 (2017)
- Ru with ALD booster: Kozodaev et al., J. Chem. Phys. 151, 204701 (2019)
- ABC Ru ALD (150°C) with H₂: Lu and Elam, Chem. Mater. 27 4950-4956 (2015)

More O₂: partial oxidation of Ru, but better surface coverage (smooth, more compact layers); also **temperature-dependent** (here 300°C+)

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
	00			

$Ru(EtCp)_2 + O_2 \rightarrow Ru + RuO_x + CO_2 + H_2O$

- HfOx buffer layer: Egorov et al., Appl. Surf. Sci. 419, 107-113 (2017)
- Ru with ALD booster: Kozodaev et al., J. Chem. Phys. 151, 204701 (2019)
- ABC Ru ALD (150°C) with H₂: Lu and Elam, Chem. Mater. 27 4950-4956 (2015)

More O₂: partial oxidation of Ru, but better surface coverage (smooth, more compact layers); also **temperature-dependent** (here 300°C+)

 H_2 reduction of RuO_x in ALD cycle, or after the deposition (tested) Ru/Co combination (H_2 used for Co deposition)

STAFF3d-spin	Ru ALD exp oo	ALD exposure mode	HfOx Nanotubes o	Summary 00
ALD expo	osure mode	e for high aspe	ct-ratio struct	ures

Surface physics: dosage = pressure · time [Langmuir = torr·μs]

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
		•		

ALD exposure mode for high aspect-ratio structures

- Surface physics: dosage = pressure · time [Langmuir = torr·μs]
- Pores: higher (longer) exposure to precursor gas needed

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
		•		

ALD exposure mode for high aspect-ratio structures

Surface physics: dosage = pressure · time [Langmuir = torr·µs]
Pores: higher (longer) exposure to precursor gas needed

Enjoy uniform coatings.

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
		•		

ALD exposure mode for high aspect-ratio structures

Surface physics: dosage = pressure · time [Langmuir = torr·µs]
Pores: higher (longer) exposure to precursor gas needed

- Common solution: stopvalve (pumping stopped for a while)
- Molecules have to diffuse inside: time · temperature helps
- Thermal ALD only (not for plasma-assistance)

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
			•	

Deposition of HfOx nanotubes in porous alumina

Why HfO_x ?

- cheaper and easier than Ru (or even Co)
- protective layer, insulating barrier (magnet/insulator/magnet)
- buffer layer for smooth Ru

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
			•	

Deposition of HfOx nanotubes in porous alumina

Why HfO_x ?

- cheaper and easier than Ru (or even Co)
- protective layer, insulating barrier (magnet/insulator/magnet)
- buffer layer for smooth Ru

200°C, \approx 70 s exposure for pore aspect ratio 175 (ϕ = 200 nm, L = 35 μ m)

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
			•	

Deposition of HfOx nanotubes in porous alumina

Why HfO_x ?

- cheaper and easier than Ru (or even Co)
- protective layer, insulating barrier (magnet/insulator/magnet)
- buffer layer for smooth Ru

200°C, \approx 70 s exposure for pore aspect ratio 175 (ϕ = 200 nm, L = 35 μ m)

How about other materials (Ru, Co)? Required exposure depends on:

- pore geometry (aspect ratio; dominating): OK, it will be the same
- temperature: OK, it will be even higher
- materials: Ru, Co more difficult (technical issues rather than chemistry)

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
	oo	o	o	●○
Summary				

Atomic layer deposition (ALD) experiments

- Ru planar layers: poor on Si, nice on HfOx buffer layer
- Co grows well on Ru (all by ALD); Co/Ru/Co to be tested
- Fe(O_x) ALD using ferrocene+O₂ not viable, O₃ needed
- Exposure mode for nanotubes in pores done for HfO_x

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
	oo	o	o	●○

Summary

Atomic layer deposition (ALD) experiments

- Ru planar layers: poor on Si, nice on HfOx buffer layer
- Co grows well on Ru (all by ALD); Co/Ru/Co to be tested
- Fe(O_x) ALD using ferrocene+O₂ not viable, O₃ needed
- Exposure mode for nanotubes in pores done for HfO_x

HfO_x nanotubes

Co ALD on Ru (Si/HfO_x/Ru/Co)

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
	oo	o	o	●0

Summary

Atomic layer deposition (ALD) experiments

- Ru planar layers: poor on Si, nice on HfOx buffer layer
- Co grows well on Ru (all by ALD); Co/Ru/Co to be tested
- Fe(O_x) ALD using ferrocene+O₂ not viable, O₃ needed
- Exposure mode for nanotubes in pores done for HfO_x

Co ALD on Ru (Si/HfO_x/Ru/Co)

Plan

- Electroless plating of nanotubes (CoB or CoNiB)
- Investigation of isolated magnetic nanotubes
- Combining electroless magnetic layer + Ru spacer by ALD
- ? Co nanotubes, Co/Ru/Co by ALD

STAFF3d-spin	Ru ALD exp	ALD exposure mode	HfOx Nanotubes	Summary
	oo	o	o	⊙●
Acknowle	edaements			

Thank you for your attention!

This work was supported by the ESF under the project CZ.02.2.69/ $0.0/0.0/19_074/0016239$.

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

We acknowledge CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110).

STAFF3d-spin project: http://magnetism.ceitec.cz/staff3d-spin/ (slides of presentations, updates, ...)

Electroless deposition of nanotubes

Conformal coating of modified walls of porous template

- Silanization of pore walls (Al₂O₃ only) APTES
- Sensitization of pore walls SnCl₂
- Activation PdCl₂ (Pd seeds)
- Deposition immersion in a plating bath
- Removal top/bottom layer, template dissolution

Template with seed particles Initial growth Images from *ECS Trans.* **64** (31), 39-48 (2015). Plating bath:

- metal salt (CoSO₄)
- reducing agent (DMAB)
- stabilizing agent (sodium citrate)

CoNiB electroless plating in Al₂O₃ porous template

Commercial template with pore branching close to the end; cross-section, template and deposit (partially) broken

Secondary electrons

Back-scattered electrons (less charging, more material contrast)

Electroless plating 'replicates' the pore shape, including defects.

Towards nanotubes: deposition routes

How about nanotubes when the porous template is from Al₂O₃?!

metallize the pores (Ru ALD or electroless plating below)

Towards nanotubes: deposition routes

How about nanotubes when the porous template is from Al₂O₃?!

- metallize the pores (Ru ALD or electroless plating below)
- ALD of metallic oxide and reduction, e.g., Fe₂O₃ → Fe₃O₄ → Fe [Fe(Cp)₂ = ferrocene precursor available], similar to Ni from Ni(Cp)₂ Giordano et al., ACS Appl. Mater. Interfaces 12, 40443-40452 (2020)

Towards nanotubes: deposition routes

How about nanotubes when the porous template is from Al₂O₃?!

- metallize the pores (Ru ALD or electroless plating below)
- ALD of metallic oxide and reduction, e.g., Fe₂O₃ → Fe₃O₄ → Fe [Fe(Cp)₂ = ferrocene precursor available], similar to Ni from Ni(Cp)₂ Giordano et al., ACS Appl. Mater. Interfaces 12, 40443-40452 (2020)

- physical vapour deposition on vertical nanowires Dr. Kolíbal
- electroless plating, also seed metallic layer for ALD in nanopores (acquired chemicals for CoB, CoNiB)