Magnonics & Metastable Iron
Magnetic patterning by focused ion beam writing
Direct writing of magnetic patterns by focused-ion-beam irradiation presents a favorable alternative to the conventional lithography approaches. We study epitaxially grown metastable face-centered cubic (fcc) Fe thin films which undergo structural (fcc->bcc) and magnetic (paramagnetic->ferromagnetic) phase transformation upon ion-beam-irradiation. By using focused ion beam (FIB) we are able to write ferromagnetic (bcc Fe) patterns into the paramagnetic (fcc Fe) layer with sub-100 nm resolution with control over the saturation magnetization (irradiation dose) and even anisotropy (irradiation scanning direction).
The transformed structures are ideal for building complex magnonic circuits and devices. Currently, the project runs in two branches, one branch is aimed to material development and the second branch focuses on magnonic application.
For further details, contact Michal Urbánek (michal.urbanek(at)ceitec.vutbr.cz).
Related publications:
- Flajšman et al., Physical Review B 101(1), 014436 (2020). DOI: 10.1103/PhysRevB.101.014436. arXiv:1906.12254
- Gloss et al., Applied Surface Science 469, 747-752 (2019). DOI: 10.1016/j.apsusc.2018.10.263. arXiv:1807.08055.
- Urbánek et al., APL Materials 6, 060701 (2018). DOI: 10.1063/1.5029367
- Gloss et al., Applied Physics Letters 103, 262405 (2013). DOI: 10.1063/1.4856775.
Magnonics
[under construction]
Wojewoda, O. , Ligmajer, F., Klíma, J., Dhankhar, M., Davídková, K., Staňo, M., Holobrádek, J., Šikola, T., & Urbánek, M. (2022). Observing high-k magnons with Mie-resonance-enhanced Brillouin light scattering. ArXiv:2206.05178 [cond-mat.mes-hall]
Vaňatka, M. , Szulc, K., Wojewoda, O., Dubs, C., Chumak, A., Krawczyk, M., Dobrovolskiy, O. V., Kłos, J. W., & Urbánek, M. (2021). Spin-wave dispersion measurement by variable-gap propagating spin-wave spectroscopy. Physical Review Applied, 16(5), 054033. https://doi.org/10.1103/PhysRevApplied.16.054033. ArXiv:2107.09363 [Cond-Mat, Physics:Physics].
Turčan, I. , Flajšman, L., Wojewoda, O., Roučka, V., Man, O., & Urbánek, M. (2021). Spin wave propagation in corrugated waveguides. Applied Physics Letters, 118(9), 092405. https://doi.org/10.1063/5.0041138. ArXiv:2011.01274 [cond-mat, physics:physics].
Wojewoda, O ., Hula, T., Flajšman, L., Vaňatka, M., Gloss, J., Holobrádek, J., Staňo, M., Stienen, S., Körber, L., Schultheiß, K., Schmid, M., Schultheiß, H., & Urbánek, M. (2020). Propagation of spin waves through a Néel domain wall. Applied Physics Letters 117(2), 022405. https://doi.org/10.1063/5.0013692. ArXiv:2005.05690. [Featured article, open access]
Hache, T., Vaňatka, M., Flajšman, L., Weinhold, T., Hula, T., Ciubotariu, O., Albrecht, M., Arkook, B., Barsukov, I., Fallarino, L., Hellwig, O., Fassbender, J., Urbánek, M., & Schultheiss, H. (2020). Freestanding positionable microwave-antenna device for magneto-optical spectroscopy experiments. Physical Review Applied, 13(5), 054009. https://doi.org/10.1103/PhysRevApplied.13.054009. arXiv:1911.11517.
Flajšman, L ., Wagner, K., Vaňatka, M., Gloss, J., Křižáková, V., Schmid, M., Schultheiss, H., & Urbánek, M. (2020). Zero-field propagation of spin waves in waveguides prepared by focused ion beam direct writing. Physical Review B, 101(1), 014436. https://doi.org/10.1103/PhysRevB.101.014436. arXiv:1906.12254